If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-2100=0
a = 2; b = 10; c = -2100;
Δ = b2-4ac
Δ = 102-4·2·(-2100)
Δ = 16900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16900}=130$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-130}{2*2}=\frac{-140}{4} =-35 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+130}{2*2}=\frac{120}{4} =30 $
| 21/2x=105 | | 2/3x-2/3=-2/3 | | 3x+2(x–1)=9x+4 | | x(5)+8=(9)x | | 2=x/6 | | t•2-3=30 | | 1/4(4-x)=10+21 | | 34700000-25000y=27700000+375000y | | 10=-3t^2+12t+25 | | 16-4k+20=-64 | | 0.99m=10.00+0.89 | | 10=-3t^2+12t | | (7b+1)(5)=0 | | 40/x=3/5 | | x*5/7=40.5 | | 2m-7=-22 | | C=15n+48 | | 8x+145=10x | | 3/5=40/x | | 4x-5x+16=16-x | | 6÷x=30÷-20 | | x(5)+8=9 | | 1-5x=0.995 | | 3/5=13.32+x | | 4x2-21x+19=-8x+9 | | 12+3y=11y-20 | | (2x+5)(4x^2-10x+25)=0 | | b/13-8/13=35/153 | | .99m=10.00+.89 | | X-3=5x-12-x | | v+10=39 | | -7p+6=-29 |